

ESOT Congress Review

London 29 June – 2 July 2025 Pre-Congress Day 28 June 2025

Contents

Thank you for attending the ESOT Congress 2025	5
The ESOT Congress in numbers	4
Congress tracks	5
Opening Session	6
A Changing Climate - Challenges for Society, Healthcare Systems, and Transplantation	6
Scientific Programme highlights: Leonardo Da Vinci Award	8
Scientific Programme highlights: Hot topics	14
Be a LonDonor	17
Building a living legacy for East London and beyond	17
Machine perfusion highlights	19
Ultrasound pathology	20
Education workshops	20
Sustainability at the ESOT Congress	21
Congress awards	22
Thank you to our partners	24
ESOT Congress 2025 Organising Committee	25
Daily Recaps	25
Thank you to our abstract reviewers	26

Thank you

for attending the ESOT Congress 2025

As we conclude a brilliant ESOT Congress in London under the theme 'Nurturing a Sustainable Transplantation Journey', we reflect on the meaningful discussions and shared commitment to advancing transplantation practices with care and long-term sustainability.

Throughout the event, we explored the vital intersection of environmental responsibility and transplant innovation, reaffirming our dedication to both patient outcomes and planetary health.

With an international gathering of experts and thought leaders, we deepened our understanding of the latest medical breakthroughs while also taking meaningful steps toward a greener, more sustainable future for organ transplantation. The collaboration and insights shared throughout the congress have laid a strong foundation for continued progress, both clinically and environmentally.

We would like to express our deepest gratitude to everyone who has played a role in bringing this fantastic event to life. This includes the Scientific Programme Committee (SPC) for their timeless work in curating the outstanding Scientific Programme, as well as the Local Organising Committee (LOC) for their dedication in ensuring a seamless experience. We'd also like to thank the International Board of Reviewers for their meticulous efforts in selecting the most exceptional abstracts. A special thank you goes to our Congress Co-Chairs, Olivier Thaunat and Colin Wilson, for their visionary leadership and unwavering commitment throughout the execution of the event.

And to each and every one of you - speakers, presenters, delegates and participants - thank you for being part of this extraordinary journey. Your passion, dedication and expertise are what makes the ESOT Congress a truly global, world-renowned event.

"If each of you takes just one small step back to your workplace, we will have achieved something meaningful here at the ESOT Congress in London"

Professor Gabriel Oniscu, ESOT President 2023-2025

The ESOT Congress in numbers

3,192

delegates

91 countries represented Top 10 countries represented:

United Kingdom Spain
France Spain Germany

USA Switzerland

Italy South Korea

The Netherlands Sweden

14

industry sponsored symposia

56

industry partners

470,473

people reached for the 'Be a LonDonor' campaign

1,655

abstracts submitted 385

oral presentations

1,789,527

people reached from #ESOTcongress social posts

989

social media posts using #ESOTcongress

1.300+

articles in the press

Congress tracks

Science lies at the centre of the ESOT Congress, driving meaningful discussions, dynamic debates, and collaborative innovations.

The event took attendees on a journey through five distinct tracks, each presenting fresh insights and solutions tailored to the evolving transplantation landscape.

Who should be on the waiting list? How should it be managed?

This track explores issues around ethics, emerging indications for transplantation and allocation strategy

Donation, Preservation and Regeneration

How do we optimise the organs to be transplanted? How far are bioengineered grafts?

This track investigates cutting-edge developments in donor managment, organ preservation, regeneration and bioengineering

Current Challenges in Transplantation Procedures

How do we make a good start?

This track covers the complex surgical and anaesthetic aspects of transplantation procedures, including living donation

Transplant Immunology and Immunosuppression

How many rejection(s) are there? Can we trick recipients' immune system(s)?

This track delves into recent breakthroughs in transplant immunology and the strategies to prevent rejection and induce tolerance

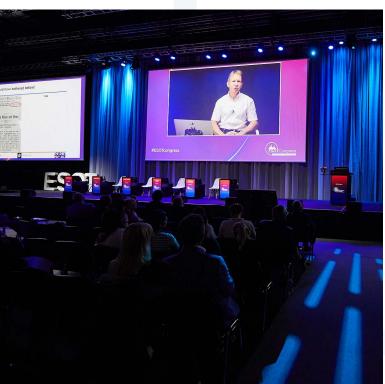
Infectious Diseases, Malignancies and Long-term Challenges

What threatens the life of patients living with a graft? How do we manage recurrent disease?

This track examines the complications of therapeutic immunosuppression, include infections and cancers, and proposes innovative strategies to prevent these complications

Opening Session

A Changing Climate - Challenges for Society, Healthcare Systems, and Transplantation


The ESOT Congress 2025 kicked-off with a powerful and thought-provoking session addressing one of the most urgent issues of our time: the intersection between climate change and healthcare, with a special focus on transplantation.

Congress Chairs Olivier Thaunat and Colin Wilson welcomed delegates and set the tone for both the session and event, dedicated to exploring and nurturing a sustainable transplantation journey. "It's a real honour to welcome you to this meeting, which focuses on a theme that touches all of our working lives," said Wilson.

The urgency and scale of the challenge ahead were brought into focus and underscored, perhaps symbolically, by the heatwave across much of the European continent during the week of the Congress.

A recorded keynote message by climate expert Jean-Marc Jancovici delivered a historical and scientific overview of climate change. He illustrated how it is far from a new issue, sharing archival newspaper clippings from over a century ago and research from the 19th century that discussed changes in our atmosphere.

"If we stopped all emissions tomorrow, the CO₂ already in the atmosphere would still be affecting our climate for centuries," he explained. "Even after 1,000 years, a quarter of our CO₂ surplus would remain", noting the harsh reality that the planet's future climate will never return to pre-industrial conditions. To contextualise the gravity of recent temperature increases, Jancovici pointed out that the last Ice Age was only 4°C cooler than pre-industrial temperatures, making current changes abrupt and extreme in geological terms.

He warned of wide-ranging impacts, from increased incidence of diseases such as Lyme disease and malaria to food insecurity, rising sea levels, more intense hurricanes, and potential social unrest – all of which could significantly lower global life expectancy. Jancovici also highlighted the role healthcare systems play, being significant contributors to emissions through areas such as medical device manufacturing, pharmaceuticals, and waste.

Climate Change and Health Systems: The European Outlook

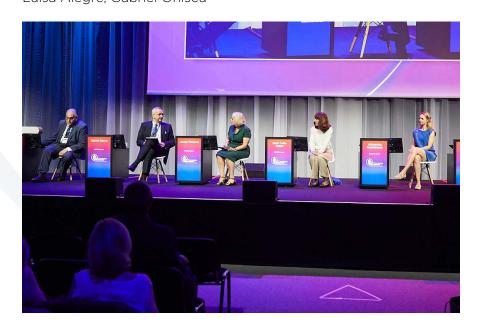
Aleksandra Kazmierczak of the European Environment Agency (EEA) followed with a regional perspective in her talk, "Climate-related Health Risks and Impact on Health Systems."


She stressed that "Europe is the fastest-warming continent," noting alarming trends including escalating heatwaves, widespread flooding, and persistent water scarcity – which now affects 34% of Europeans annually. She projected that by the 2080s, structural damage to healthcare infrastructure from extreme weather events could cost up to €520 million each year. Furthermore, more than

half of all infectious diseases are now believed to be influenced or exacerbated by climate change.

Kazmierczak pointed to emerging solutions, including preventative strategies and a growing emphasis on climate change education in healthcare. Encouragingly, more than 80% of public health schools in Europe now include climate-related content in their curricula. "Doctors and nurses can be real champions for climate action," she said, citing research showing healthcare professionals are among the most trusted voices in society.

Environmental Factors and Transplant Outcomes


Maria Luisa Alegre brought the focus to transplantation science in her presentation on the "Impact of Environmental Factors on Alloimmunity and Transplant Fate." She outlined how variable environmental factors such as diet, pollution, exercise, and gut microbiota can influence transplant outcomes and immune responses.

Drawing on recent mouse model studies (Real et al., 2019; Molinero, 2016; Li et al., 2023), Alegre showed evidence that physical activity improves graft survival, glycaemic control, and cardiac function, while a high-fat diet accelerates rejection and intensifies alloimmune responses.

"The tackling of metabolomic profiles in transplant candidates may enable personalised strategies that preserve diverse microbiota to improve transplant outcomes and reduce post-transplant complications," she concluded.

The session concluded with a panel discussion moderated by Jacqui Thornton, featuring Aleksandra Kazmierczak, Maria Luisa Alegre, Gabriel Oniscu

(ESOT President), and Derek Manas (Medical Director, NHS Blood and Transplant). The discussion focused on the actionable steps that the transplantation and wider medical communities can take to address the growing climatehealth crisis – from research and policy to public communication and sustainable clinical practices.

Scientific Programme highlights

Leonardo Da Vinci Award — Clinical Science

Pre-donation cardiac arrest is associated with modest graft survival benefit in liver transplantation

Analysis of the United Network for Organ Sharing (UNOS) registry suggests that livers from donors with pre-donation cardiac arrest may confer a modest survival advantage, supporting their safe use in clinical liver transplantation.¹²

Ischemic preconditioning through pre-donation cardiac arrest (PDCA) may render donor livers more resilient to ischemiareperfusion injury.3 Analysing 74.592 adult liver transplant procedures from the UNOS registry (2010-2023), investigators identified PDCA in 43.7% of donors. After adjusting for donor and recipient factors, PDCA was associated with modestly improved graft survival (adjusted hazard ratio [aHR] 0.914; 95% CI, 0.851-0.982; p=0.012), with greater benefit

observed in donation after circulatory death (DCD) donors and those with elevated alanine aminotransferase (ALT).

The effect was more evident in specific donor subgroups, with survival benefits concentrated among DCD donors, those with moderately elevated ALT, shorter admission-to-donation intervals, and older donor age. A doseresponse trend also emerged: each doubling of PDCA duration conferred additional graft survival benefit (aHR 0.953; 95% CI, 0.917-0.991; p=0.018).

No increase in early allograft dysfunction was observed, and similar associations were seen across secondary outcomes, reinforcing the robustness of the findings.

These results represent the largest real-world demonstration of ischemic preconditioning in liver transplantation and support the inclusion of PDCA livers in clinical practice, potentially expanding the donor pool by reducing unnecessary discards.

Leonardo Da Vinci Award — Clinical Science Nominees

Cristina Silvestre

Kristina Andrijauskaite

Rongrong Hu Zhu

Deceased-donor-initiated chains sustain kidney paired donation in Italy

Leonardo Da Vinci Award — Clinical Science Nominee: Cristina Silvestre

Integrating deceased donors into living-donor kidney exchange chains has enabled a substantial increase in transplant opportunities for hard-to-match patients, while preserving donor safety and regional equity, a six-year national study reveals.⁴

The pioneering DEC-K (DECeased-donor initiated Kidney exchange) programme⁵ leverages deceased donors to trigger transplant chains involving immunologically incompatible living-donor pairs. From March 2018 to December 2024, 30 chains were launched across 15 transplant centres, resulting in 79 transplants; 52 from living donors and 27 from deceased donors were returned to the regional transplant waiting list of the initiating donor's region, preserving geographic fairness at chain conclusion.

Most chains involved two to three donorrecipient dyads and were prompted by ABO (blood type) incompatibility (n=25), HLA (immune system) sensitisation (n=19), or both (n=6). Chains had an average duration of 98.5 days, reflecting the coordination needed to complete multi-centre exchanges. Despite this complexity, the programme maintained a high completion rate.

Notably, 93.6% of chains completed successfully. Reasons for early termination in three cases included clinical or psychological issues. Importantly, no serious complications occurred in living donors, and only four graft losses were recorded: two vascular thromboses, one rejection, and one primary non-function.

At 6-months post-transplant, serum creatinine levels were comparable between living and deceased donor recipients (1.3 vs. 1.4 mg/dL; p=0.24), and one-year patient survival reached 98.7%.

This study confirms the feasibility and impact of deceased-donor-initiated chains in expanding transplant access and supporting equity-driven organ allocation, particularly in settings where altruistic, non-directed donors are scarce.

Ex vivo hypothermic perfusion preserves paediatric hearts for up to 8 hours

Leonardo Da Vinci Award — Clinical Science Nominee: Kristina Andrijauskaite

A novel portable device demonstrated safe, effective preservation of paediatric-sized donor hearts with strong myocardial function and transplant success in preclinical models.⁶

The VP.S ENCORE® PEDSTM device represents a critical innovation in paediatric donor heart preservation, employing a bespoke hypothermic perfusion system tailored to meet the metabolic needs of small hearts. In this preclinical study, six porcine hearts approximating infant and child size were perfused at 7.8 ± 1.5 °C under a controlled pressure of 11 ± 1.4 mmHg, achieving mean flow rates of 22 ± 14 mL/min for up to 8 hours. No edema was observed during preservation.

Metabolic assessment revealed low lactate levels (<3 mmol/L) throughout perfusion, consistent with sustained aerobic metabolism and limited ischemic injury. Endothelial integrity assays

confirmed preservation of the vascular lining, while Langendorff re-perfusion testing showed strong left ventricular contractility (dP/dT >2,000 mmHg/s), indicating preserved myocardial function.

Two heterotopic transplants of preserved hearts were successfully completed in matched porcine recipients, showing 100% survival, normal metabolic profiles, and stable cardiac activity at the time of implantation. Behavioral assessments in recipient animals were within normal range through postoperative day 7, with no signs of rejection.

By safely extending preservation time beyond the 4–6 hour limit of cold storage, this device could transform transplant logistics, expanding access across wider geographic regions and reducing time pressures during surgical coordination. Future studies will assess long-term outcomes, immunologic responses, and support translation to clinical trials in paediatric patients.

Side-to-side duodenoduodenostomy delivers low complication rates in pancreas transplantation¹

Leonardo Da Vinci Award — Clinical Science Nominee: Rongrong Hu Zhu

A single-centre series using duodenoduodenostomy for exocrine drainage reported a 10% intestinal complication rate and 86.7% graft survival at 5 years, with no perioperative mortality.⁷

Effective exocrine drainage remains a key determinant of success in pancreas transplantation, and duodenoduodenostomy (DD) offers a physiologic alternative that replicates native pancreatic anatomy.8 In a single-centre study conducted between May 2016 and November 2024, 170 pancreas transplants were performed using a side-to-side DD technique, anastomosing the donor duodenum to the recipient's antimesenteric duodenum.

The median recipient age was 43 years (IQR 36-39), and median cold ischemia time was 8 hours (IQR 6.1-10.1). Intestinal complications

occurred in 10% of cases, including paralytic ileus (n=5), intestinal occlusion (n=4), DD dehiscence (n=5), post-transplantectomy duodenal dehiscence (n=1), and anastomotic bleeding (n=2). Eleven cases (6.5%) required surgical intervention, including adhesiolysis, primary closure, redo of the enteric anastomosis, transplantectomy, and one Hartmann's procedure. No perioperative mortality was reported.

At a median follow-up of 39.8 months (IQR 18.1-69), pancreas graft survival was 86.7% at one, three, and five years, and patient survival reached 100%, 99.2%, and 99.2%, respectively.

These findings support side-to-side DD as a safe and effective exocrine drainage technique in pancreas transplantation, offering durable outcomes with a manageable complication profile. Broader multicentre studies are warranted to confirm reproducibility across centres.

Scientific Programme highlights

Leonardo Da Vinci Award — Basic Science

T-cell regulatory loss precedes emergence of de novo donor-specific antibodies

A new study reveals that dysregulated alloreactive T-cell responses can be detected months before the emergence of de novo donor-specific antibodies (dnDSA) in kidney transplant recipients.⁹

To explore early immune events leading to dnDSA, researchers conducted longitudinal analyses on peripheral blood samples from 52 initially DSAnegative patients in the OuTSMART trial.¹⁰ Using FluoroSpot assays, they measured IFN-γ and IL-17 production from CD4⁺ T cells following stimulation with donor and control HLA proteins, with and without depletion of regulatory cell subsets (CD19⁺ B cells and CD25^{hi} Tregs).

Antigen-specific IFN-γ responses (ASR) were

detectable in 67.9% of assays (95/140), including in samples collected up to 32 months before dnDSA onset. From 4-months prior to dnDSA detection, unregulated IFN-y responses to donor antigens became more prevalent, while control responses remained predominantly regulated. Furthermore, 28% of DSA samples (n=74) had unregulated IFN-y responses, compared with 21% of controls (n=66), while regulated responses were twice as frequent in controls. No similar trend was observed for IL-17. Flow cytometry profiling suggested changes in regulatory immune subsets during this pre-sensitisation window.

These findings offer the first clinical systematic evidence of a quantifiable immune shift preceding dnDSA, identifying a potential window for early risk stratification and immune intervention to preserve long-term graft function.

Leonardo Da Vinci Award — Basic Science Nominees

Robin Fröbom

Alexis Piedrafita

Raniero Chimienti

OX118: A fully human anti-OX40L antibody that suppresses effector T cells and expands Tregs

Leonardo Da Vinci Award — Basic Science Nominee: Robin Fröbom

OX118 significantly reduced v and CD8⁺ T-cell proliferation while enriching CD4⁺CD25⁺FOXP3⁺ regulatory T cells in mixed lymphocyte reactions, and fully protected mice from graft-versus-host disease (GvHD), with 100% survival at day 56, minimal chimerism, and durable disease control.¹¹

Co-stimulatory signalling through OX40/OX40L is critical for full T-cell activation, and its inducible nature makes it an attractive target for immune modulation.¹² OX118 is a fully human, ADCC-enhanced monoclonal antibody designed to block OX40L with high potency and selectively modulate immune responses. In allogeneic mixed lymphocyte reactions, OX118 suppressed CD4⁺ and CD8⁺ T-cell proliferation to 15.6% and 20.2% of control levels, respectively, outperforming benchmark agents including Belatacept, oxelumab (IgG1), and amlitelimab (IgG4). Importantly, OX118 induced a dosedependent expansion of CD4+CD25+FOXP3+ regulatory T cells, reaching 43% of the proliferating CD4⁺ pool compared to 8.8% in controls—a feature not replicated by other agents, with only modest effects observed for oxelumab and none for amlitelimab or

Belatacept. In parallel, it reduced bystander activation across natural killer cells, B cells, and CD14⁺ monocytes, suggesting a targeted immunomodulatory profile with limited off-target immune activation.

In a humanised xenogeneic GvHD model, OX118 conferred complete protection from clinical disease. Treated animals maintained body weight, exhibited <1% human CD45⁺ cell chimerism by day 35 (versus ~33% with IgG4 anti-OX40L), and showed reduced human leukocyte infiltration across tissues. GvHD clinical scores remained low through day 56, indicating sustained disease control. All control animals died by day 39, while 100% of OX118- and amlitelimab-treated animals survived through study completion. No adverse clinical signals were observed, and weight gain inversely correlated with disease scores, supporting OX118's tolerability.

These findings highlight OX118 as a first-in-class, ADCC-optimised anti-OX40L antibody with dual immunomodulatory activity. By suppressing effector T-cell proliferation and expanding regulatory T-cell populations, OX118 offers a compelling approach to costimulation blockade and has now entered Phase 1 clinical evaluation for autoimmune and alloimmune indications.

Transcriptomics reveals PVAN-like abnormalities in BK viremia and identifies candidate drugs for repurposing

Leonardo Da Vinci Award — Basic Science Nominee: Alexis Piedrafita

Whole-transcriptome analysis distinguishes PVAN from normal and TCMR biopsies, reclassifies low-level BK viremia cases, and highlights potential therapeutic targets.¹³

Polyomavirus-associated nephropathy (PVAN) remains a serious post-transplant complication lacking precise diagnostic tools and effective treatment. Using RNA-seq on 78 BK virus-positive kidney biopsies (26 PVAN, 52 isolated BK viremia), researchers identified 3,572 differentially expressed genes compared to normal samples.

Functional analyses highlighted dysregulated pathways in inflammation, metabolism, and cell cycle regulation. Cell deconvolution revealed increased infiltration of plasma cells, CD8⁺ and

CD4⁺ T cells (including follicular helper and memory subsets), NK cells, and both M1 and M2 macrophages in PVAN biopsies, indicating a broad immune response.

PCA analysis confirmed that PVAN cases form a distinct transcriptomic cluster, with 10 isolated BK viremia samples (regardless of viral load) clustering with PVAN. This suggests that current BK viremia thresholds may miss underlying PVAN-like pathology.

Additionally, a drug repurposing analysis using the Connectivity Map identified candidate compounds capable of antagonising the PVAN transcriptomic signature. These findings support the use of transcriptomics to refine PVAN diagnosis and uncover therapeutic opportunities.

Viral infection reactivates NK cell rejection of hypoimmune SC-islets via NKG2D ligands

Leonardo Da Vinci Award — Basic Science Nominee: Raniero Chimienti

Triple-knockout stem cell-derived islets resist immune attack under sterile conditions but become vulnerable to natural killer (NK)-mediated cytolysis following viral challenge, due to infection-induced expression of NKG2D-activating ligands.

Stem cell-derived pancreatic islets engineered to lack MHC-I, B7-H3, and CD155 (triple knockout, T-KO) evade both T cell and NK cell-mediated rejection under homeostatic conditions, representing a promising strategy for universal islet replacement in type 1 diabetes. However, the effect of viral infection on NK cell activation and graft tolerance remains undefined. To investigate this, luciferase-expressing T-KO islets were transplanted into diabetic mice, followed by NK cell humanisation on day 10 and infection with lymphocytic choriomeningitis virus (LCMV-WE) on day 24.16

LCMV-WE infection induced acute thrombocytopenia and significantly elevated viral titers in NK-humanised mice. By day 7 postinfection, human C-peptide levels had declined by over 60%, accompanied by a ~70% reduction in graft bioluminescence, indicating loss of islet function and survival. Histological analysis revealed marked infiltration of hCD56⁺ NK cells at the graft site. Mechanistic evaluation confirmed upregulation of NKG2D ligands MICA/B and ULBP3 on infected T-KO islets, enabling NK cell recognition and rejection via the NKG2D pathway. In contrast, non-humanised mice retained stable graft function and viral control, implicating human NK cells as key mediators of rejection in this context.

These findings reveal that viral infection can override engineered immune evasion by inducing alternative NK-activating signals, restoring "missing-self" recognition. For hypoimmune islet therapies to achieve long-term success, next-generation strategies must incorporate viral resilience to prevent infection-triggered graft loss, including modulating NKG2D ligand expression, introducing NK-inhibitory ligands, or embedding antiviral protection.

Scientific Programme highlights **Hot topics**

Researchers create functional human islets in 3D printing breakthrough

A team of international scientists has made a major leap forward in diabetes research by successfully 3D printing functional human islets using a novel bioink.¹⁷ The breakthrough involved printing human islets using a customised bioink made from alginate and decellularised human pancreatic tissue. This approach produced durable, high-density islet structures that remained alive and functional for up to three weeks, maintaining strong insulin responses to glucose and showing real potential for future clinical use.

Traditional islet transplants are typically infused into the liver, a process that can result in significant loss of cells and limited long-term success. In contrast, the 3D-printed islets in this study were designed to be implanted just under the skin, a simple procedure requiring only local anaesthesia and a small incision.

"Our goal was to recreate the natural environment of the pancreas so that transplanted cells would survive and function better," explained lead author Quentin Perrier. "We used a special bioink that mimics the support structure of the pancreas, giving islets the oxygen and nutrients they need to thrive."

To keep the fragile human islets safe during printing, the team created a gentler way to print by fine-tuning key settings – using low pressure (30 kPa) and a slow print speed (20 mm per minute). This careful approach reduced physical stress on the islets and helped keep their natural shape, solving a major problem that

had held back earlier bioprinting attempts.

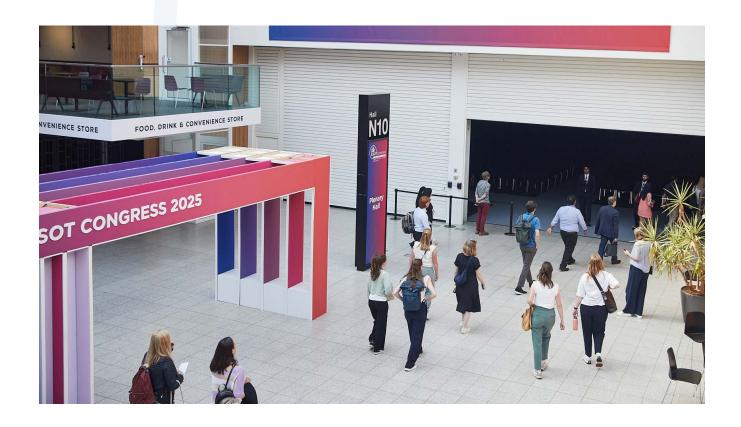
In laboratory tests, the bioprinted islets staved alive and healthy, with over 90% cell survival. They also responded better to glucose than standard islet preparations, releasing more insulin when it was needed. By day 21, the bioprinted islets showed a stronger ability to sense and react to blood sugar levels. Importantly, the constructs maintained their structure without clumping or breaking down, overcoming a common hurdle in earlier approaches.

"While there is still work to be done, this new bioprinting method marks a critical step toward personalised, implantable therapies for diabetes. If clinical trials confirm its effectiveness, it could transform treatment and quality of life for millions of people worldwide," Dr. Perrier concluded.

Breakthrough in pig-to-human kidney transplantation

A pioneering study has provided unprecedented insights into the immune response following pig-to-human kidney xenotransplantation. ¹⁸ The findings mark a significant step forward in overcoming the biggest challenge in xenotransplantation: rejection by the human immune system.

Using cutting-edge spatial molecular imaging, the international research team (Paris Institute for Transplantation and Organ Regeneration & NYU Langone Transplant Institute) mapped how human immune cells interact with pig kidney tissue in transplanted organs, revealing critical early markers of rejection and potential intervention strategies.


Human immune cells were found in every part of the pig kidney's filtering system after the transplant. The researchers observed early molecular signs of antibody-mediated rejection as soon as Day 10 and peaking at Day 33, reinforcing previous findings that rejection begins rapidly but progresses over time. By tracking these immune responses for up to 61 days, the team identified a crucial window for targeted therapeutic intervention.

The study's innovative approach used a bioinformatic pipeline to distinguish human immune cells from pig structural cells, allowing for precise mapping of immune infiltration patterns. Notably, macrophages and myeloid cells were the most prevalent immune cell types across all time points, further confirming their role as key mediators in xenograft rejection. When targeted therapeutic interventions were introduced, immune-mediated signs of rejection were successfully weakened. Combined with novel spatial insights into how immune cells interact with pig kidney tissue, this marks a

major breakthrough — paving the way for more refined anti-rejection strategies. These advances come at a pivotal time as the first US-based clinical trials of pig kidney transplantation into living human recipients begin in 2025.

"Our study provides the most detailed molecular map to date of how the human immune system engages with a transplanted pig kidney," explained Dr. Goutaudier. "By pinpointing specific immune cell behaviours and gene expressions, we can refine anti-rejection treatments and improve transplant viability."

With xenotransplantation poised to address the global organ shortage crisis, these findings bring researchers one step closer to making genetically modified pig kidneys a viable long-term solution.

Study reveals 33% gap in transplant access for UK's poorest children

New research, presented at the congress, revealed persistent inequalities in children's access to life-saving kidney transplants across the UK.¹⁹ The study highlights how ethnicity, socioeconomic status, and gender significantly influence a child's likelihood of receiving a transplant.

Researchers from the University of Bristol analysed national data from the UK Renal Registry and NHS Blood & Transplant, focusing on patients under 18 years who started kidney replacement therapy between 1996 and 2020. Their findings reveal concerning disparities in access to transplant waitlists and to both deceased and living donor kidney transplants.

Early on in their treatment, children from Black and Asian communities, girls, and those living in extremely low-income areas are frequently less likely to be placed on the transplant waitlist or receive a transplant. Compared to children from wealthier families, children from the lowest-income families have a 33% lower chance of being placed on the waiting list. Similarly, girls have a 12% lower chance of being added to the waitlist than boys.

"We were particularly struck by how early these disparities appear in the transplant process," said Dr. Alice James, lead author of the study. "It's not just about who gets a transplant, but who even gets considered in the first place."

These disparities can have profound consequences. Delays or lack of access to transplantation, especially pre-emptive transplants, prolong children's reliance on dialysis, which is associated with increased morbidity, poorer growth outcomes, cognitive delays, and reduced quality of life.

International comparisons show that these issues are not unique to the UK. Similar disparities in paediatric kidney transplant access have been documented in the United States, Canada, and Australia, particularly among Indigenous and ethnic minority populations.

ESOT is dedicated to reducing inequalities in organ transplantation, and launched the 'Be A LonDonor' campaign to coincide with the congress.

Be a LonDonor

Building a living legacy for East London and beyond

Transplantation is a life-changing and life-saving treatment for people with severe illnesses that lead to organ failure. Whether it's a heart, lung, liver, or kidney, transplantation is only possible thanks to the generosity of donors and their families, who make the precious gift of donation to those in need.

East London has a higher-than-average number of people in need of organ transplantation, yet it has lower organ donation rates compared to many other parts of the UK.

To raise awareness of the importance of organ donation and transplantation, ESOT undertook a series of activities in East London to coincide with the ESOT Congress 2025. In doing so, we hope to leave behind a meaningful legacy - one that continues to save lives and strengthen communities well into the future.

Be a LonDonor: Community Tribute Design Competition

As part of this legacy project, we have launched an open call design competition for young designers to create an installation that honours organ donors and sparks conversation about organ donation. The competition seeks impactful designs – either standalone or integrated into East London's built environment – that celebrate the life-changing gift of donation and its positive impact on recipients.

Submissions can be from individuals or teams and should reflect both the subject of transplantation and the rich cultural diversity of East London. The winning design will serve as a legacy for the community and entries are open until 30th November 2025.

ESOT Congress Student Programme

The ESOT Congress Student
Programme is a collaboration
between Queen Mary University
of London, ESOT, Barts Health
clinical staff, and the Organ
Donor Committee, aiming to
better understand why organ
donation rates in East London
are among the lowest in the UK.

Ten Year 4 medical students, many from the local area, have chosen to explore this topic through a vear-long Student Selected Component, supported by consultants in nephrology, transplant surgery, and anaesthesia. The programme is running throughout the 2024-25 academic year, with students dedicating two hours per month to research and discussion. Their final project submissions are now complete. and it is hoped these will offer valuable insights and ideas to help increase organ donation in the region.

Community Open Day

On 28 June, the day before the opening of the congress, we hosted a Community Open Day at Royal Victoria Square. The aim of the day was to encourage and raise public awareness of the importance of organ donation in the local community.

ESOT would like to thank the following charities for their involvement and participation in the day:

- Kidney Care UK
- Jain and Hindu Organ Donation Alliance (JHOD)
- LiveLifeGiveLife
- Diabetes UK
- Caribbean and African Health Network (CAHN)
- NHS Blood and Transplant (NHSBT)
- Donor Family Network

In addition to hosting the Community Open Day, ESOT launched a targeted social media campaign aimed at raising awareness of organ donation among East London residents and encouraging them to join the organ donor register. The campaign reached over 140,000 people during the congress and will continue in the coming months to broaden its impact and spread the message even further.

ESOT would also like to thank Lucy Dames, Andrew Fisher, Krishna Menon, and Raj Thuraisingham for their support in organising the Legacy Project.

Dr Raj Thuraisingham
(Consultant Nephrologist at
Royal London Hospital and
member of the ESOT
Congress Scientific
Committee) discusses why
this project, and raising
awareness of organ
donation, is so crucial to
improving outcomes for
entire patient populations.

Very few decisions are as profound or generous as choosing to become an organ donor. For someone awaiting a transplant, that choice can be the gift of life itself.

Yet in 2025, despite a national opt-out system in place since 2020, thousands across the UK remain on waiting lists - their futures uncertain. In fact, waiting lists have nearly doubled since 2021, and East London is among the hardest-hit areas in the country.

So why are we still falling short? Part of the answer lies in pockets of the capital where hesitancy, misinformation, and historical mistrust have limited donor registrations. In boroughs spanning Tower Hamlets to Newham, home to some of the UK's most ethnically diverse communities, donation rates remain below the national average, even as local need rises.

The impact of this disparity is deeply felt. In 2023/24, four out of five organs transplanted in the UK came from white donors. Since successful transplants often rely heavily on close genetic matches, patients from ethnic minority backgrounds typically wait longer for suitable donors. Encouraging donor registration within these communities is therefore essential to shorten these waits and improve outcomes - not just for individuals, but for entire patient populations.

When ESOT convenes for the congress, we make an urgent plea: to "Be a LonDonor." The campaign isn't a just slogan; it's a movement to transform short-term enthusiasm into long term cultural change, and a legacy in the truest sense of the word.

In the world of transplantation, legacy is measured in years added to recipients' lives and in the ripple effect on families, friends, and communities. Each donor can save up to nine lives and improve many more through tissue donation. That impact multiplies over decades and translates into children raised, businesses built, ideas born, all because of that one decision to say yes.

But legacy also requires infrastructure: trust building initiatives, education, and visible reminders that reinforce a culture of donation long after a congress leaves. Without this, even the most compelling awareness drives fade. The ESOT Legacy Project aims to ensure the momentum sparked in June and July becomes a self sustaining force in East London, and beyond.

Find out more: www.esotcongress.org/legacy

Machine perfusion highlights

Machine perfusion was a central theme in this year's programme, underscoring its impact on the future of organ preservation and transplantation. To meet the interest and demand for specialised training in this field, four dedicated hands-on sessions were offered, giving delegates an exclusive opportunity to engage with cutting-edge technologies and expert instruction in a practical wet lab environment.

Designed for beginners and those new to the field, the Machine Perfusion Initiation Course introduced participants to the fundamental principles of machine perfusion. The course provided a structured overview of key devices and technologies used in clinical and experimental organ preservation, offering participants a chance to gain familiarity with various systems in a collaborative, hands-on setting.

Participants worked in small groups to simulate real-world conditions, with expert facilitators guiding discussions and demonstrations. This interactive format made it easy for attendees to connect theory with practice in an engaging and accessible way.

Building on foundational concepts, the Machine Perfusion Immersive Course offered an advanced, device-specific learning experience for professionals seeking deeper technical knowledge and confidence in applying machine perfusion in real-world settings. Participants were assigned to a perfusion system they had not previously used, receiving detailed instruction and oneon-one guidance on system setup, initiation, and operational troubleshooting. This tailored format allowed professionals to not only expand their technical abilities but also evaluate the practical fit of a new device for use in their own clinical or research environments.

Ultrasound pathology

The congress offered a series of specialised ultrasound pathology workshops designed to elevate diagnostic precision in pancreas, kidney, and liver transplantation. With limited spaces to ensure close expert supervision and ample hands-on practice, these sessions combined real-time ultrasound-guided biopsy training with pathology case reviews, equipping participants with essential skills for both clinical practice and research.

Across all three workshops, participants benefited from small-group learning, direct expert feedback, and practical exposure to both procedural techniques and diagnostic interpretation. These sessions provided a rare opportunity to bridge the gap between imaging, biopsy, and pathology in transplant care, ensuring attendees left with skills they could immediately apply in clinical settings.

Education workshops

The ESOT Congress Education Workshops provided a dynamic platform for transplant professionals to deepen their knowledge, challenge conventional thinking, and explore innovative, person-centred approaches to care. This year's programme features a series of interactive sessions, both online and in person, focused on some of the most pressing and forward-looking themes in the field.

From improving adolescent transition to adult care, strengthening mentorship frameworks, and advancing clinician well-being, to addressing the urgent need to recruit and retain the next generation of transplant professionals, these workshops were designed to equip attendees with evidence-based strategies and real-world insights.

Highlights included sessions on structured transitional care programmes; strategies to address Europe's workforce shortage in transplantation; holistic approaches to clinician resilience; and a deep dive into mentorship as a tool for professional growth.

Each workshop offered a chance to reflect, collaborate, and contribute to shaping a more inclusive, skilled, and sustainable transplant community.

Sustainability at the ESOT Congress

The ESOT Congress 2025 isn't just a scientific gathering – it reflects our shared commitment to building a more sustainable future for organ transplantation and beyond. With this year's theme, "Nurturing a sustainable transplantation journey," sustainability is embedded across all aspects of the event.

By hosting the congress at Excel London, an internationally recognised venue for its environmental efforts, we are putting these values into action. From encouraging greener travel options and minimising single-use materials to partnering with suppliers who prioritise ecofriendly practices including sustainable catering, we are taking tangible steps to reduce the environmental impact of the congress. Together with our delegates, exhibitors, and partners, advanced transplantation science while protecting the planet, hand in hand.

In accordance with this year's theme, the importance of sustainable transplantation took centre stage at a Conference Plenary session, titled 'Workforce Sustainability: The Clear Current Threat to Transplantation Services in Europe'. Chaired by Colin Wilson and Anna Forsberg, the session explored what transplant professionals are currently doing, and what more can be done, to ensure the long-term sustainability of our work.

Biologist Olivier Hamant opened the session with a thought-provoking perspective on how we have over-optimised and disrupted not only our environment and economic systems, but also ourselves. He introduced the concept of robustness as a more resilient and viable approach, encouraging the ESOT community to critically evaluate current strategies and shift the focus from pure performance to long-term systemic change.

Professor Sir Stephen Powis, National Medical Director of NHS England, then provided his perspective on the working life of healthcare and transplant professionals. He explained, "Whenever we look forward in healthcare, and in transplantation, all we see is challenges. Whenever we look back, we think just how far we have come, and that is certainly the case for transplantation."

He spoke about current levels of satisfaction within the NHS workforce, highlighting both the progress made and the ongoing challenges in the UK's transplant landscape. He also outlined the role of the Organ Utilisation Group (OUG), established by the Department of Health and Social Care in England. The group was created to develop recommendations for maximising the potential of organ transplantation, both from living and deceased donors, by optimising resource use, enhancing infrastructure, and supporting innovation. A recent report delivered by the OUG outlined what needs to change to create a sustainable workforce that is fit for the future, with recommendations including:

- There must be workforce planning toolkits for all forms of transplantation to support workforce planning and reduce inequities across the service
- Psychological and social care support must be available for patients both around the time of transplant and in follow-up
- For referral, transplant and follow-up services, consideration is given regarding support for the patients when treatment is far away from their home

Professor Sir Stephen Powis concluded his presentation on a positive note, "January 2025 saw the highest number of monthly transplants since 2023 because of the high organ utilisation rate, demonstrating the positive impact of our work. The waiting list is high, but we are making progress."

Congress awards

Stronger Together PRO Award

Sponsored by Eledon

The Stronger Together PRO Award carries recognition to single transplant centres, units, institutions or hospitals. The centre, unit, institution or hospital must submit a group of abstracts (a minimum of 5) and achieve the best average score amongst all groups of abstracts.

The winners of this year's award were IKEM, Prague, Czech Republic, who received a prize of €5,000 following the Opening Session.

Medizinische Universität Innsbruck, Innsbruck, Austria, received the runners up award, and were presented a prize of €1,000.

Congratulations to both institutions!

ESOT and IPTA Marius Renard Award

In collaboration with the International Paediatric Transplant Association (IPTA), the Marius Renard Paediatric Transplant Award is granted to the best abstract in paediatric transplantation.

Congratulations to Kristina Andrijauskaite for winning this year's award for her abstract titled, 'Advancing Pediatric Heart Transplantation using the VP.S ENCORE PEDS Device'.

Kristina was awarded the prize at the session 'ESOT & IPTA Joint session: Surgical and medical challenges in paediatric transplantation'.

ECP Immunomodulation Award in Solid Organ Transplantation

Supported by Therakos, the ECP immunomodulation Award in Solid Organ Transplantation offers an educational grant to recognise and support the institution of those individuals making a difference in advancing the knowledge around solid organ transplantation.

This year's prize was awarded to Anna Marianne Weijler for her project titled, 'Single-Cell Transcriptomic Analysis of Immune Modulation by Extracorporeal Photopheresis in Lung Transplant Recipients'.

Anna was awarded the prize at the 'Future Leaders on Stage' session.

Supporting excellence in transplantation: ESOT Congress bursaries

ESOT is wholly committed to advancing transplantation science and creating equal opportunities for researchers at all career levels. For this year's congress, we offered a number of bursaries to assist with the costs associated with attending the congress, ensuring that talented professionals from around the world can participate and share their latest research findings.

As well as 20 full bursaries and 20 registration bursaries, we introduced the 'ESOT Future Leaders Bursary' for this year's congress, specifically dedicated to young professionals from low- and middle-income countries who submitted an abstract.

Thank you to our partners

ESOT would like to thank its partners for supporting the ESOT Congress and for working together to improve outcomes for patients with terminal organ disease by means of transplantation, organ regeneration and substitution.

Platinum Sponsors

Gold Sponsors

Silver Sponsors

General Sponsors

Exhibitors

Transplant Community Partners

Industry Symposia

The ESOT Congress Industry Symposia offered a unique platform for our valued partners to showcase cutting-edge research, present innovative solutions, and engage with the transplant community.

Sunday 29 June	Monday 30 June	Tuesday 1 July
Biotest 15:30 - 16:30 BST	Takeda 08:00 - 09:00 BST	Aferetica 08:00 - 09:00 BST
MSD 15:30 - 16:30 BST	CareDx 13:00 - 14:00 BST	Astellas 08:00 - 09:00 BST
PeerVoice 15:30 - 16:30 BST	Hansa Biopharma 13:00 - 14:00 BST	Thermo Fisher Scientific 08:00 - 09:00 BST
	XVIVO 13:00 - 14:00 BST	Eurofins 13:00 - 14:00 BST
	Chiesi 17:45 - 18:45	OrganOx 13:00 - 14:00 BST
		Therakos 13:00 - 14:00 BST

ESOT Congress 2025 Organising Committee

We want to express our deepest gratitude to everyone who has played a role in bringing this event to life, including:

Scientific Programme Committee (SPC)

Olivier Thaunat, Lyon, France (Congress Co-Chair)

Colin Wilson, Newcastle, United Kingdom (Congress Co-Chair)

Anya Adair, Edinburgh, United Kingdom (SPC Executive)

Varuna Aluvihare, London, United Kingdom (SPC Executive)

Ekaterine Berishvili, Geneva, Switzerland (SPC Executive)

Maarten Naesens, Leuven, Belgium (SPC Executive)

Oriol Bestard, Barcelona, Spain

Gregor Bond, Vienna, Austria

Saskia Bos, Leuven, Belgium

Philippe Compagnon, Geneva, Switzerland

Lionel Couzi, Bordeaux, France

Lucy Dames, London, United Kingdom

Caroline Dudreuilh, London, United Kingdom

Giuseppe Feltrin, Padua, Italy

Hermien Hartog, Groningen, The Netherlands

Speranta Iacob, Bucharest, Romania

Sophie Limou, Nantes, France

Sandra Lindstedt, Lund, Sweden

Gianluca Rompianesi, Naples, Italy

Jelena Stojanovic, London, United Kingdom

Fabio Vistoli, Pisa, Italy

Robin Vos, Leuven, Belgium

ESOT Congress Daily Recaps

Catch up with action from the congress in our official daily recaps.

View here:

Sunday

Monday

Tuesday

Wednesday

Local Organising Committee (LOC)

Krish Menon, London (Chair)

Menna Clatworthy, Cambridge

Andrew Fisher, Newcastle

Paul Johnson, Oxford

Maria Kaisar, Oxford

Katie Morley, Cambridge

Gavin Pettigrew, Cambridge

Stephen Pettit, Cambridge

Rommel Ravanan, Bristol

Candice Roufosse, London

Niloufar Safinia, London

Karen Stevenson, Glasgow

Raj Thuraisingham, London

Steve White, Newcastle

Thank you to our abstract reviewers

Shadab Abadpour, Norway Anya Adair, United Kingdom Baris Emin Akin, Turkey Sara Alcántara Carmona, Spain Malcolm Alison, United Kingdom Cristiano Amarelli, Italy Frederike Ambagtsheer ,The Netherlands Hatem Amer, United States Coby Annema. The Netherlands Corinne Antoine, France Teresa Antonini, France Helmut Arbogast, Germany Hassan Argani, Iran Zainab Arslan, United Kingdom Olivier Aubert, Switzerland Umberto Baccarani, Italy Richard Baker, United Kingdom Deniz Balci, Turkey Chloe Ballesté Delpierre, Spain Ulrich Baumann, Germany Rachna Bedi, United Kingdom Maria Irene Bellini, Italy Irene Bello, Spain Christian Benden, Germany Stan Benjamens, The Netherlands Marina Berenguer, Spain Ekaterine Berishvili, Switzerland Gabriela Berlakovich, Austria Thierry Berney, Switzerland Georg Böhmig, Austria John Boletis, Greece Eliano Bonaccorsi Riani, Belgium Gregor Bond, Austria Michael Bonios, Greece Saskia Bos, Belgium Katrina Bramstedt, Sweden Gerald Brandacher, Austria Anna Brantmark, Sweden Joe Brierley, United Kingdom Sophie Brouard, France Klemens Budde, Germany Claire Bullen, United Kingdom Lisa Burnapp, United Kingdom Patrizia Burra, Italy Isabel Campos-Varela, Spain Diego Cantarovich, France Massimo Cardillo, Italy François Carlier, Belgium Amedeo Carraro, Italy John Casey, United Kingdom Federica Casiraghi, Italy Xavier Charmetant, France Julien Charpentier, France Pietro Cippà, Switzerland Antonio Citro, Italy Stephen Clark, United Kingdom Philippe Compagnon, Switzerland Miriam Cortes Cerisuelo, United Kingdom

Maria Rosa Costanzo, United States

Lionel Couzi, France Emanuele Cozzi, Italy Antonia Cronin, United Kingdom Joanne Crook, United Kingdom Josep Maria Cruzado, Spain David Cucchiari, Spain Jan Czogalla, Germany Marita Dalvindt, Sweden Lucy Dames, United Kingdom Maria Darema, Greece Sarwa Darwish Murad, The Netherlands Eelco de Koning, The Netherlands Olivier de Rougemont, Switzerland Aiko de Vries, The Netherlands Annelies de Weerd. The Netherlands Nicolas Degaugue, France Olivier Detry, Belgium Andrea Devaney, United Kingdom Fritz Diekmann, Spain Gillian Divard France Fabienne Dobbels, Belgium Beatriz Domínguez-Gil, Spain Daniele Dondossola, Italy Frank J.M.F. Dor, The Netherlands Caroline Dudreuilh, United Kingdom François Durand, France Magdalena Durlik, Poland Antoine Durrbach, France Elke Eggenhofer, Germany Fabian Eibensteiner, Austria Marco Eijken, The Netherlands Marie-Paule Emonds, Belgium Wolfgang Ender, Switzerland Bo-Göran Ericzon, Sweden Constança Ferreira de Figueiredo Germany Joana Ferrer-Fàbrega, Spain Carl-Ludwig Fischer-Fröhlich, Germany Andrew Fisher, United Kingdom Inese Folkmane, Latvia Antonia Follenzi, Italy Constantino Fondevila, Spain Katrina Ford, United Kingdom Anna Forsberg, Sweden John Forsythe, United Kingdom Marie-Chantal Fortin, Canada Ana Franca, Portugal Claire Francoz, France Peter Friend, United Kingdom Lucrezia Furian, Italy Asimina Fylaktou, Greece Dale Gardiner, United Kingdom Željka Gavranović, Croatia Anja Geerts, Belgium Edward Geissler, Germany Vicky Gerovasili, United Kingdom Pierre Gianello, Belgium Patricia Ging, Ireland

Peter Girman, Czech Republic

Alexandra Glazier, United States Aviva Goldberg, Canada Dela Golshayan, Switzerland Dawn Goodall, United Kingdom Paolo Antonio, Grossi Italy Karine Hadaya, Switzerland Hermien Hartog, The Netherlands Nigel Heaton, United Kingdom Sebastiaan Heidt, The Netherlands Merel Hellemons, The Netherlands Amelia Hessheimer, Spain Joanna Hester, United Kingdom Christian Hiesse, France Luuk Hilbrands, The Netherlands Martin Hoogduijn, The Netherlands Sarah Hosgood, United Kingdom Dane Howard, United Kingdom Speranta Jacob, Romania Asia Imedi, United Kingdom Helena Isoniemi, Finland Fadi Issa, United Kingdom Nichon Jansen, The Netherlands Alan Jardine, United Kingdom Fatema Jessa, United Kingdom Ina Jochmans, Belgium Carl Jorns, Sweden Andreas Kahl, Germany Maria Kaisar, United Kingdom Piotr Kaliciński, Poland Nassim Kamar, France Julie Kerr-Conte, France Nicos Kessaris, United Kingdom Muhammad Khurram, United Kingdom Zeljko Kikic, Austria Simon Knight, United Kingdom Katja Kotsch, Germany Andreas Kousios, Cyprus Dávid Kovács, United States Philipp Kron, Germany Robert Langer, Germany Stephen Large, United Kingdom Yannick Le Meur, France Fanny Lebreton, Switzerland Carmen Lefaucheur, France Christophe Legendre, France Henri Leuvenink, The Netherlands Sophie Limou, France Sandra Lindstedt, Sweden Ugolino Livi, Italy Caterina Lonati, Italy Kevin Louis, France Gaetano Lucisano, United Kingdom Barbara Ludwig, Germany Asbjørn Lunnan, Norway Pauline Ly, United Kingdom Haifa Lyster, United Kingdom Mehdi Maanaoui, France Umberto Maggiore, Italy

Oriol Manuel, Switzerland

Martí Manyalich, Spain Christophe Mariat, France Smaragdi Marinaki, Greece Lorna Marson, United Kingdom Dominique Martin, Australia Nuria Masnou, Spain Emma Massey, The Netherlands Chiara Mazzarelli, Italy Ines Mega, Portugal Bruno Meiser, Germany Krishna Menon, United Kingdom Pierre Merville, Spain Franka Messner, Austria Herold Metselaar, The Netherlands Irena Milaniak, Poland Robert Minnee, The Netherlands Thomas Minor, United States Geir Mioen, Norway Cyril Moers, The Netherlands Ismail Mohamed, United Kingdom Alejandro Montero Salinas, Spain Greg Moorlock, United Kingdom Jose Morales, Spain Emmanuel Morelon, France Katie Morley, United Kingdom Dimitrios Moutzouris, United Kingdom Nicolas Mueller, Switzerland Thomas Mueller, Switzerland Elmi Müller, South Africa Silvio Nadalin, Germany Maarten Naesens, Belgium Marcus Nauwerk, Switzerland James Neuberger, United Kingdom Michiel Nijhoff, The Netherlands Rikke Nørregaard, Denmark Rainer Oberbauer, Austria Gabriel Oniscu. Sweden Fernanda Ortiz, Finland Christina Papachristou, Greece Vassilios Papalois, United Kingdom David Paredes-Zapata, Spain

Norberto Perico, Italy Palmina Petruzzo, Italy Stephen Pettit, United Kingdom Lorenzo Piemonti, Italy Daniele Pievani, Italy Nina Pilat, Austria Pierluca Piselli, Italy Rutger Ploeg, United Kingdom Cathy Pogson, United Kingdom Eva Pokorna, Czech Republic Wojciech Polak, The Netherlands Luciano Potena, Italy Caren Randon, Belgium Rommel Ravanan, United Kingdom Tomas Reischig, Czech Republic Thomas Resch, Austria Robert Rieben, Switzerland Paolo Rigotti, Italy Flyana Rista, Albania Dave Roelen, The Netherlands Jacopo Romagnoli, Italy Gianluca Rompianesi, Italy Linda Ross, United Kingdom Candice Roufosse, United Kingdom Alison Rowley, United Kingdom Berta Saez Gimenez, Spain Faouzi Saliba, France Jan-Stephan Sanders, The Netherlands Alberto Sandiumenge, Spain Eva Santos, United Kingdom Frantisek Saudek, Czech Republic Deirdre Sawinski, United States Stefan Schneeberger, Austria Hanne Scholz, Norway Soren Schwartz Sorensen, Denmark Martin Schweiger, Switzerland Willam Scott, United Kingdom Jochen Seissler, Germany Nazia Selzner, Canada Adnan Sharif, United Kingdom Maria Simonenko, Russia

Valeria Sordi, Italy Eduardo Sousa, Portugal Karen Stevenson, United Kingdom Olivier Thaunat, France Shih-Ning Then, Australia Rachel Thomas, United Kingdom Raj Thuraisingham, United Kingdom Francesca Tinti, Italy Christian Toso, Switzerland Luca Toti, Italy Khe Tran. The Netherlands Roberto Troisi, Italy Pavel Trunecka ,Czech Republic Stefan Tullius, United States Brigitte Ursini, France Ines Ushiro-Lumb, United Kingdom Marleen van Buren, The Netherlands Luc van der Laan, The Netherlands Teun Van Gelder. The Netherlands Cees van Kooten. The Netherlands Steven Van Laecke, Belgium Ondrej Viklicky, Czech Republic Carmen Vinaixa, Spain Fabio Vistoli, Italy Angeliki Vittoraki, Greece Robin Vos, Belgium Annemarie Weissenbacher, Austria Thomas Wekerle, Austria Hayley Wells, United Kingdom Steven White, United Kingdom Andrzej Wiecek, Poland Barbara Wildhaber, Switzerland Michelle Willicombe, United Kingdom Colin Wilson, United Kingdom Martin Karl Wissing, Belgium Sanjay Kumar Yadav, India Andrea Zajacova, Belgium Gianluigi Zaza, Italy Krzysztof Zieniewicz, Poland Andreas Zuckermann, Austria

- 1. Amarnath DR, et al. Impact of pre-donation cardiac arrest on liver transplantation. Presented at the European Society for Organ Transplantation Congress 2025; London, UK. UNOS (2025). https://unos.org/

Liset Pengel, The Netherlands

- Zhang Q, et al. (2014). Ischemic preconditioning improves liver tolerance to congestion-reperfusion injury in mice. The Journal of surgical research, 189(1), 152-158,
- 4. Silvestre C, et al. Deceased-donor initiated chain: six-year results on behalf of the Italian Kidney Paired Donation Group. Presented at the European Society for Organ Transplantation Congress 2025; London, UK.
- Nicolo, A. (2018). DEC-K Programme (DECeased Kidney paired exchange). The University of Manchester. https://research.manchester.ac.uk/en/ impacts/dec-k-programme-deceased-kidneypaired-exchange
- Andrijauskaite K, et al. Advancing paediatric heart transplantation using the VP.S ENCORE® PEDS device. Presented at the European Society for Organ Transplantation Congress 2025; London, UK.
- Torroella A, et al. Duodenoduodenostomy in pancreas transplantation: A single-centre experience. Presented at the European Society for Organ Transplantation Congress 2025; London, UK.

8. Ferrer-Fàbrega J & Fernández-Cruz L (2020). Exocrine drainage in pancreas transplantation Complications and management. World journal of transplantation, 10(12), 392-403. Basu S, et al. Loss of regulation of antigen-specific

Antonij Slavcev, Czech Republic

- IFN-γ-producing T cells precedes the appearance of de novo DSA post transplant. Presented at the European Society for Organ Transplantation Congress 2025; London, UK. 10. Stringer D, et al. (2023). Optimized
- immunosuppression to prevent graft failure in renal transplant recipients with HLA antibodies (OuTSMART): A randomised controlled trial. eClinicalMedicine, 56, 101819.
- 11. Fröbom R, et al. OX118, a novel fully human anti-OX40L monoclonal antibody with optimal immune modulating properties. Presented at the European Society for Organ Transplantation Congress 2025; London, UK.
- 12. Croft M, et al. (2009). The significance of OX40 and OX40L to T-cell biology and immune disease. Immunological reviews, 229(1), 173-191. 13. Piedrafita A, et al. RNAseq changes associated
- with polyomavirus-associated nephropathy: From pathophysiology to drug repurposing. Presented at the European Society for Organ Transplantation Congress 2025; London, UK.

- 14. Kuypers DR (2012). Management of polyomavirusassociated nephropathy in renal transplan recipients. Nature reviews. Nephrology, 8(7) 390-402
- 15. Chimienti R, et al. (2022). Engineering of immune checkpoints B7-H3 and CD155 enhances immune compatibility of MHC-I-/- iPSCs for β cell replacement. Cell Reports, 40(13), 111423
- 16. Chimienti R. et al. The immunosurveillance of hypoimmunogenic stem cell-derived pancreatic islets: impact of viral infection. Presented at the European Society for Organ Transplantation Congress 2025; London, UK.

 17. Perrier Q., Jeong, W., Rengaraj, A., et al.
- Breakthrough in 3D printing: Functional human islets in an alginate-decm bioink. Presented at ESOT Congress 2025; 30 June 2025; London, L
- Goutaudier V., Williams, C., Morgand, E., et al. Application of a Novel Spatial Transcriptomic 6000-Plex Panel in Pig-to-Human Xenotransplantation. Presented at ESOT Congress 2025; 30th June 2025; London, United Kingdom. 19. James A., Bailey P., Plumb L. Investigating
- Inequalities in Access to Paediatric Kidney Transplantation, Presented at FSOT Congress 2025; 1st July 2025; London, United Kingdom.

